NMR Based Quantum Information Processing: Achievements and Prospects

نویسندگان

  • D. G. Cory
  • T. F. Havel
  • N. Boulant
  • G. Boutis
  • Y. S. Weinstein
  • W. H. Zurek
چکیده

Nuclear magnetic resonance (NMR) provides an experimental setting to explore physical implementations of quantum information processing (QIP). Here we introduce the basic background for understanding applications of NMR to QIP and explain their current successes, limitations and potential. NMR spectroscopy is well known for its wealth of diverse coherent manipulations of spin dynamics. Ideas and instrumentation from liquid state NMR spectroscopy have been used to experiment with QIP. This approach has carried the field to a complexity of about 10 qubits, a small number for quantum computation but large enough for observing and better understanding the complexity of the quantum world. While liquid state NMR is the only present-day technology about to reach this number of qubits, further increases in complexity will require new methods. We sketch one direction leading towards a scalable quantum computer using spin 1/2 particles. The next step of which is a solid state NMR-based QIP capable of reaching 10-30 qubits. Corresponding author: David G. Cory Massachusetts Institute of Technology NW14-2217 150 Albany St Cambridge, MA 02139 Phone: (617) 253-3806 fax: (617) 253-5405 [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Information Processing: Cryptography, Computation, and Teleportationn - Proceedings of the IEEE

Present information technology is based on the laws of classical physics. However, advances in quantum physics have stimulated interest in its potential impact on such technology. This article is a reasonably introductory review of three aspects of quantum information processing, cryptography, computation, and feleportation. In order to give a level of self-containment, I serve up hors d' oeuvr...

متن کامل

NMR Quantum Information Processing

Nuclear magnetic resonance (NMR) has provided a valuable experimental testbed for quantum information processing (QIP). Here, we briefly review the use of nuclear spins as qubits, and discuss the current status of NMR-QIP. Advances in the techniques available for control are described along with the various implementations of quantum algorithms and quantum simulations that have been performed u...

متن کامل

Introduction to the second issue

Following the theme initiated in the rst issue of QIC, in this second issue, we include invited review papers on the current status of achieving entanglement in experiments. Here we include a paper on photon entanglement and its applications by Wolfgang Tittel and Gregor Weihs and a paper on entanglement of atomic ions by Cass Sackett. A subsequent issue will include papers on entanglement in t...

متن کامل

A review of quantum thermodynamics

In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of ho...

متن کامل

Quantum tomography for solid-state qubits

– We propose a method for the tomographic reconstruction of qubit states for a general class of solid-state systems in which the Hamiltonians are represented by spin operators, e.g., with Heisenberg-, XXZ-, or XY -type exchange interactions. We analyze the implementation of the projective operator measurements, or spin measurements, on qubit states. All the qubit states for the spin Hamiltonian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002